Gestão de Operações Produtivas
(Módulo 1)

Prof. Marcio Cardoso Machado
http://marciocmachado.com.br

2017
Sumário

1 INTRODUÇÃO À LOGÍSTICA E OPERAÇÕES DA PRODUÇÃO 4

1.1 Revisão da abordagem histórica ... 4
1.2 Revolução Industrial (século XVIII) .. 4
1.3 Revolução dos Serviços ... 5

2 CONCEITOS FUNDAMENTAIS ... 6

2.1 O que é Operação .. 6
2.2 Organizações de Manufatura e Serviços ... 6
2.3 Gestão da Operações Produtivas ... 10
 2.3.1 Custo ... 10
 2.3.2 Qualidade ... 10
 2.3.3 Rapidez .. 11
 2.3.4 Flexibilidade ... 11
 2.3.5 Confiabilidade .. 11
2.4 Unidades de Apoio a Produção .. 12

2.5 Modelo de Transformação ... 13
 2.5.1 Sistema de produção por projeto .. 14
 2.5.2 Sistema de produção Jobbing ... 15
 2.5.3 Sistema de Produção por Lotes ou Bateladas 15
 2.5.4 Sistema de Produção em Massa .. 15
 2.5.5 Sistema de Produção Contínuo ... 15

3 VISÃO ESTRATÉGICA DAS OPERAÇÕES PRODUTIVAS 16

3.1 Prioridades competitivas .. 16
3.2 Elaborando a estratégica de operação ... 16

4 AVALIAÇÃO DA EFICIÊNCIA E PRODUTIVIDADE 17

4.1 Eficiência .. 17
 4.1.1 Exercício de Eficiência ... 17
4.2 Produtividade .. 18
 4.2.1 Produtividade parcial ... 18
1 Introdução à Logística e Operações da Produção

1.1 Revisão da abordagem histórica

- A função produção – conjunto de atividades que transforma um bem tangível em um outro, com maior utilidade – acompanha o homem desde sua origem. Exemplo:
 - Quando polia a pedra a fim de transformá-la em utensílio mais eficaz, o homem pré-histórico estava executando uma atividade de produção.
 - Com o passar do tempo, muitas pessoas se revelaram extremamente habilidosas na produção de certos bens e passaram a produzi-los conforme solicitação e especificações apresentadas por terceiros – surgiam então os primeiros artesãos e a primeira forma de produção organizada.

1.2 Revolução Industrial (século XVIII)

- Com o advento da Revolução Industrial a produção artesanal começou a entrar em decadência.
- Com a descoberta da máquina a vapor em 1764, por James Watt, tem início o processo de substituição da força humana pela força da máquina.
- Os artesões começaram a ser agrupado nas primeiras fábricas – iniciando os processos de padronização e processo de fabricação.
- No fim do século XIX, surgiram nos Estados Unidos os trabalhos de Frederick Taylor, considerado o pai da Administração Científica. Começa a despontar o conceito de produtividade, isto é, a procura por melhores métodos de trabalho e processos de produção, com o objetivo de se obter melhoria da produtividade com o menor custo possível.
- Na década de 1910, Henry Ford cria a linha de montagem seriada, revolucionando os métodos e processos produtivos até então existentes – surge o conceito de produção em massa.
- A produção em massa – linha de montagem, posto de trabalho, estoques intermediários, arranjo físico, manutenção preventiva, controle estatístico da
qualidade e fluxograma de processos – aumentou de maneira fantástica a produtividade e a qualidade dos produtos.

- A partir da década de 1960 começaram a surgir novas técnicas produtivas, caracterizando a denominada produção enxuta.

- A Produção enxuta introduziu novos conceitos, dentre as quais o conceito *Just-in-time* – produção com o mínimo de estoque – e o consórcio modular – diversos parceiros trabalham juntos dentro da planta da Volkswagem, em Resende, nos seus respectivos módulos, para a montagem dos caminhões e ônibus.

1.3 Revolução dos Serviços

- Ao longo de todo o desenvolvimento dos processos de fabricação o setor de serviços esteve sempre presente, de forma crescente.

- Na segunda metade do século XX, em função da acelerada evolução da mecanização e dos processos produtivos, a força de trabalho começa a se deslocar das empresas essencialmente fabris para as empresas prestadoras de serviços.

- Hoje o setor de serviço emprega mais pessoas e gera maior parcela do produto interno bruto na maioria das nações do mundo.
2 Conceitos Fundamentais

2.1 O que é Operação

Todo produto, bens ou serviços, que está disponível para nossa aquisição ou utilização, é fruto de um conjunto de operações. Portanto, as atividades de produção de bens e de prestação de serviços, que criam valor para os clientes, em termos de preço, qualidade, agilidade, flexibilidade, inovação e atendimento, são operações.

Operações também podem ser definidas como uma combinação de ações técnicas e administrativas que tem a finalidade de fazer com que um item cumpra uma função requerida.

Por decorrência a Gestão de Operações/Produção é a atividade de gerenciar recursos destinados à produção e disponibilização de bens e serviços.

2.2 Organizações de Manufatura e Serviços

A administração da produção e operações pode ser entendida como um conjunto de atividades que quando orientadas levam a produção de um bem ou de um serviço.

A Administração da Produção, diferentemente do que o nome possa sugerir, não trata apenas das atividades relacionadas com as atividades fabris, ou seja, aquela que se preocupa na transformação física de uma determinada matéria-prima em um bem acabado, ela se preocupa também com as atividades relacionadas com a produção de serviços. As atividades relacionadas com a produção de um bem ou um serviço são muitas vezes completamente distintas em função das especificidades que caracterizam produtos e serviços.

Estas características podem passar pelo próprio produto entregue ao cliente, estoques, influências da mão-de-obra, até a padronização. A tabela 1.1. representa esta distinção.
Desta forma torna-se necessária uma distinção entre o que chamamos de produto e serviço:

<table>
<thead>
<tr>
<th>Características</th>
<th>Produtos</th>
<th>Serviços</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produto final</td>
<td>Físico</td>
<td>Intangível</td>
</tr>
<tr>
<td>Estoques</td>
<td>Comum</td>
<td>Impossível</td>
</tr>
<tr>
<td>Padronização dos insumos</td>
<td>Comum</td>
<td>Difícil</td>
</tr>
<tr>
<td>Influência da mão-de-obra</td>
<td>Moderada/baixa</td>
<td>Alta</td>
</tr>
<tr>
<td>Padronização do produto final</td>
<td>Comum</td>
<td>Difícil</td>
</tr>
</tbody>
</table>

Tabela 1.1. Distinção entre produtos e serviços (adaptado de Moreira, 1998)

Normalmente chamamos de produto qualquer output de um sistema produtivo, seja ele um bem ou serviço. É muito comum nos referirmos a um determinado serviço prestado por um banco, como um produto. Esta prática não está errada, a distinção feita nesta apostila serve, assim como nos livros que trato do assunto, para uma melhor compreensão das especificidades dos produtos e dos serviços.

Podemos dizer então que:

Produtos: é um bem físico, tangível, que dependendo da conveniência pode ser estocado e/ou padronizados. Exemplo: automóvel, um aparelho de DVD ou um navio.

Serviços: sua principal característica é a intangibilidade, normalmente é necessário que o cliente ou o seu bem estejam presentes para que seja prestado o serviço. O serviço não prestado é serviço perdido pois não existe a possibilidade de estocagem.

Toda esta separação entre produtos e serviços é importante para que possamos compreender suas especificidades e, a partir daí, projetarmos o sistema produtivo mais adequado para um produto ou serviço.
Estratégias de produção, objetivos, projetos, planejamento, controle e melhoria dependerão das características dos produtos ou serviços que serão entregues ao cliente.

Alguns sistemas produtivos produzem apenas bens físicos e outros apenas serviços, porém cada vez mais produtos e serviços estão se fundindo e se transformando em algo que chamamos de um composto de bens e serviços.

Se tomarmos por base um restaurante *fastfood* percebemos que o que o cliente adquire ao entrar em uma loja é um misto de produtos – lanches - e serviços – o atendimento e o local para fazer a refeição -. Desta forma podemos dizer que diferentes produtos e serviços oferecem, na verdade, um composto dos dois. A graduação deste composto pode ser representada por um contínuo entre produtos e serviços.

![Contínuo entre produtos e serviços](image)

Fig. 1.1. Contínuo entre produtos e serviços.
Independentemente da gradação, é necessário que os produtos e/ou serviços estejam à disposição para serem consumidos, devendo, na medida do possível, estar próximos ao consumidor. Para tanto, as empresas necessitam cada vez mais de esquemas de distribuição rápidos e eficazes, com vários depósitos de produtos acabados junto aos mercados consumidores, ou esquemas de entrega extremamente ágeis, pois o prazo de entrega é fator essencial na decisão de comprar.

A logística empresarial, parte integrante da administração das operações, constitui um conjunto de técnicas de gestão da distribuição e transporte dos produtos finais, do transporte e manuseio interno às instalações e do transporte das matérias-primas necessárias ao processo produtivo.

Com a globalização das economias e a criação de produtos padronizados em termos mundiais, partes dos carros podem ser produzidas em países diferentes e montadas em local, conforme as conveniências.

No tocante aos serviços, com a melhoria dos meios de comunicação, é normal encontrarmos empresas com seus departamentos de cobranças, de atendimento ao cliente, jurídico etc., em cidades diferentes.

Na área de mercados de capital, temos os fluxos de dinheiro que, como uma “nuvem”, vagam sobre o mundo à procura de locais onde possam “descer” e obter o máximo rendimento possível.
2.3 Gestão da Operações Produtivas

A gestão das operações produtivas, como a gestão de qualquer outra função na empresa (marketing, finanças, recursos humanos, etc) têm objetivos a cumprir. Estes objetivos não podem ser antagônicos aos objetivos organizacionais, mas do que isso, eles precisam contribuir para que os objetivos maiores da organização sejam alcançados.

Os principais objetivos da Administração da Produção/Operações são ao mesmo tempo forças competitivas internas à organização. Segundo Slack, *at al*, estes objetivos são:

2.3.1 Custo

Diminuir o preço de um determinado produto pode representar aumento significativo no volume de vendas, porém se isto não ocorrer a margem de lucro ficará corroída. Um trabalho intenso deverá ser realizado para que, através de uma revisão nos processos produtivos, os custos de produção sejam reduzidos a fim de o percentual de perdas dos lucros nas vendas sejam recuperados. Em um ambiente competitivo, como o que vivenciamos hoje, competir por custos pode ser muito mais que uma estratégia competitiva, pode representar a própria sobrevivência da empresa. Como exemplo de custos podemos citar: custos com funcionários, custos com matéria-prima e custos com instalações.

2.3.2 Qualidade

Qualidade tanto para produtos como para serviços é algo que exige pleno conhecimento do consumidor, pois é este que a definirá. A qualidade do produto ou serviços entregue ao cliente dependerá da correta tradução das necessidades dos clientes para dentro do processo produtivo. A perfeita utilização dos recursos produtivos também representa uma importante ferramenta para que a qualidade do produto seja alcançada. Traduzindo este objetivo, entendemos que qualidade é fazer certo, o trabalho certo, para que o produto certo seja entregue ao cliente.
2.3.3 Rapidez

Cada vez mais a pronta resposta ao mercado se torna um fator competitivo importante. As empresas procuram reduzir seu tempo de produção para que possa suprir as necessidades de seus clientes. Enquanto reduzir o tempo de produção pode auxiliar na conquista de novos clientes, esta mesma rapidez pode trazer problemas de qualidade e custo durante o processo de produção. Aumentar a rapidez e manter qualidade superior acompanhada de custos adequados é o grande desafio da administração da produção, os quais só poderão ser alcançados através de um perfeito funcionamento do sistema produtivo.

2.3.4 Flexibilidade

A produção em massa tem, cada vez mais, dado lugar a uma produção mais flexível. Esta flexibilidade pode estar relacionada ao volume de produção ou ao tipo de produto ou serviço prestado. Quando tratamos de serviços, encontramos uma maior necessidade de flexibilização em suas características, o cliente que vai ao restaurante pode optar entre um filé bem passado, ao ponto ou mal passado, e mesmo diante destas opções o cliente pode não ficar satisfeito com o filé e pedir que o mesmo seja trocado ou “retrabalhado”. O grau de flexibilidade ou customização dependerá da necessidade do cliente e da capacidade da empresa em se organizar para o atendimento destas necessidades.

2.3.5 Confiabilidade

Entregar bens e serviços aos clientes em tempo é o que podemos chamar de confiabilidade. Como em um processo produtivo identificamos clientes internos (funcionários) e externos (consumidores), entendemos que a confiabilidade precisa acontecer primeiro entre os clientes internos para que os consumidores possam receber seus produtos no momento em que desejarem. A confiabilidade pode economizar custos e dar estabilidade ao processo produtivo.
2.4 Unidades de Apoio a Produção

Muitas unidades na empresas emprestam suas atividades para que o sistema produtivo possa funcionar. Estas unidades de apoio são:

- **Manutenção** – serve para manter os equipamentos em perfeitas condições de uso evitando, portanto, que paradas inesperadas ocorram durante o processo produtivo, o que pode acarretar prejuízo em termos de custos e qualidade.

- **Planejamento e Controle** – atividade que pretende estabelecer (prever) a forma como os diversos recursos produtivos deverão ser utilizados. É também controlar se o que foi previsto está sendo executado.

- **Controle da Qualidade** – os produtos entregues aos clientes devem estar em perfeita condição de uso e devem atender as necessidades dos consumidores. Nesse sentido, várias ferramentas gerenciais foram criadas com o intuito de controlar o processo de produção de um bem ou serviço a fim de que o produto final não se afaste dos padrões de qualidade estabelecidos.

- **Custos** – o controle e previsão dos custos envolvidos na produção de um bem ou serviço possibilita que o preço de venda do produto ou da prestação de serviço seja estabelecido de forma a oferecer a rentabilidade desejada. Numa situação de grade concorrência esta unidade de apoio pode ser considerada de grande importância estratégica.

- **Suprimentos** – durante a realização do produto ou do serviço, os diversos postos de trabalho precisam ser supridos com matéria-prima necessária à execução da atividade. O bom funcionamento do suprimento permite que o processo de produção possa fluir de forma contínua e sem paralisações.
2.5 Modelo de Transformação

Um processo pode ser conceituado como um conjunto de atividades que através das suas inter-relações são capazes de alcançar um determinado objetivo. Estas atividades recebem recursos que após um processo de transformação oferecerão produtos ou serviços para os clientes. A ideia de processo pode ser traduzida em várias escalas, se imaginarmos a mesa de trabalho de um gerente é possível perceber que, normalmente, encontramos duas caixas: uma com a inscrição “entrada” e outra com a seguinte inscrição “saída”. Estas inscrições revelam que nesta mesa há a ocorrência de um processo produtivo. Se, de outra forma, observarmos uma fábrica poderíamos ver caminhões repletos de matéria-prima chegando e, em outra parte da fábrica, caminhões saindo cheios de produtos acabados. O que também representaria um processo. Estes dois exemplos são bem representativos e revelam que a ideia de processo é abrangente. Na figura 4.1 temos uma representação de um processo.

![Figura 4.1: Modelo Geral de Transformação](image)
Para a produção de um produto ou serviço é preciso que um processo seja constituído. Este processo, dependendo de sua organização, pode ser considerado um sistema de produção. Cada sistema de produção precisará avaliar, principalmente, duas variáveis: volume e variedade. A figura 4.2 faz uma relação entre estas duas varáveis e classifica os sistemas de produção em função desta relação.

![Figura 4.2: Tipos de sistemas de produção (Slack, 2002)](image)

2.5.1 Sistema de produção por projeto

Sistemas de produção por projetos são aqueles que têm como saídas (outputs) produtos muito variados e baixos volumes de produção, ou até mesmo únicos. Neste tipo de sistema de produção o produto permanece estático, parado em uma posição fixa, por isso os recursos produtivos devem ser transportados até o local onde o produto está sendo realizado. Como exemplo deste tipo de sistema de produção, podemos citar um estaleiro. Na produção de um navio são as pessoas, equipamentos e materiais que se deslocam até o produto. Nesta situação o projeto do processo torna-se muito importante, pois o tempo de produção costuma ser longo. No setor de serviços o desenvolvimento de software é um exemplo.
2.5.2 Sistema de produção Jobbing

A produção Jobbing é caracterizada por grande variedade de produtos e pequenos volumes de produção. Neste tipo de produção os produtos compartilham os recursos produtivos. Em muitos casos, o mesmo equipamento é utilizado para vários produtos no mesmo dia e o número de produtos diferentes por operador também é muito grande. O grau de versatilidade dos funcionários, por este motivo, deve ser grande. Exemplos: alfaiataria (manufatura) e oficina de reparos de carros (serviços).

2.5.3 Sistema de Produção por Lotes ou Bateladas

Este tipo de sistema de produção se parece muito com o sistema Jobbing, porém o grau de variedade neste caso não é tão elevado. No sistema por lotes é comum que haja repetição de serviços. Podemos citar como exemplo a produção de peças de roupas.

2.5.4 Sistema de Produção em Massa

Sistemas de produção em massa têm como característica altos volumes de produção e variedade baixa. Sua característica é que as operações relacionadas com a produção são repetitivas – em série – e relativamente previsíveis. Na produção de um automóvel, de um eletrodoméstico ou de uma cerveja o sistema encontrado é o de produção em massa.

2.5.5 Sistema de Produção Contínuo

Por operarem com volumes ainda maiores o sistema de produção contínuo se diferencia do de produção em massa. As indústrias petroquímicas são exemplos de indústria que operam com produção contínua. Outros exemplos são, a produção de energia elétrica, a siderurgia ou a produção de alguns tipos de papeis (Slack, 2002).
3 Visão estratégica das operações produtivas

3.1 Prioridades competitivas

Todo sistema produtivo tem características operacionais específicas, e por esse motivo necessita de ações que priorizem os objetivos de desempenho que mais contribuem para a melhoria da sua competitividade. Desta forma surgem as seguintes questões:

Qual papel a função produção deveria desempenhar para atingir o sucesso estratégico?

Quais são os objetivos de desempenho da produção e quais os benefícios internos e externos que derivam do fato de exceder-se em cada um deles?

3.2 Elaborando a estratégica de operação

O papel mais básico da produção é implementar a estratégia. A função produção também deve apoiar a função produção, e isso significa desenvolver suas capacitações de modo a permitir à organização aprimorar e refinar seus objetivos estratégicos.

Aspiração da função produção
Ser a base da estratégia competitiva da empresa
Ser um diferencial competitivo
Adotar as melhores práticas
Corrigir erros graves

Estágios

Contribuição crescente da produção

Redefinir as perspectivas do setor
Ser a melhor
Ser tão boa quanto os concorrentes
Parar de Atrapalhar

A impulsão da estratégia empresarial, é o passo mais difícil, que vai garantir vantagem única de longo prazo.
4 Avaliação da eficiência e produtividade

4.1 Eficiência

É a relação entre o que se obteve (output) e o que se consumiu em sua produção (input), **medidos na mesma unidade** (Martins & Laugeni, 2005).

Exemplo 1: Qual a eficiência de um transformador elétrico que no processo de redução de tensão de 11.000 volts para 110 volts recebe a energia de 850kWh e envia 830kWh?

\[
e = \frac{\text{output}}{\text{input}} = \frac{830 \text{kWh}}{850 \text{kWh}} = 0,98 \text{ ou } 98\%
\]

Exemplo 2: Qual a eficiência econômica de uma empresa que incurreu em custos de $150.000,00 para gerar uma receita de $176.000,00?

\[
e = \frac{\text{output}}{\text{input}} = \frac{176.000}{150.000} = 1,17 \text{ ou } 117\%
\]

4.1.1 Exercício de Eficiência

1). Qual eficiência econômica da empresa Alfa se a sua receita foi de $22 milhões e os custos necessários para a produção foram de 20,9 milhões?

2). Sabendo que a eficiência econômica de uma empresa da indústria de auto-peças é de 125% e que esta empresa faturou $240.000,00. Quais foram os custos incorridos?
4.2 **Produtividade**

Quando tratamos de sistemas produtivos, um dos maiores desafios dos gerentes de operações diz respeito à perfeita utilização produtiva dos recursos de uma organização. A isto damos o nome de produtividade.

A produtividade é, portanto, um índice que representa a relação entre o que se produz em uma empresa (outputs) e os recursos utilizados para esta produção (inputs).

A produtividade pode ser expressa da seguinte forma:

\[P = \frac{O}{I} \]

Onde:

\(P = \) Produtividade

\(O = \) Output

\(I = \) Input

4.2.1 Produtividade parcial

Quando relacionamos aquilo que é produzido por uma empresa com apenas um dos insumos (recursos) utilizados, estamos obtendo um índice parcial de produtividade.

a) **Produtividade da mão-de-obra**: significa uma relação entre a quantidade de mão-de-obra (homem-hora) utilizada e a produção da empresa.
Exemplo 1

Determinar a produtividade parcial da empresa ALFA, com base na mão-de-obra (homem-hora) utilizada, sabendo que em certo ano fiscal o faturamento foi $ 35 milhões e que para alcançá-lo foram utilizados 175 funcionários, os quais trabalharam em média 170 horas/mês.

Solução:

Mão-de-obra (input) = 175 homens x 170 horas/mês x 12 meses/ano.

\[Input = 357.000 \text{ homens} \times \text{hora/ano} \]

\[Output = 35.000.000,00 \text{/ano} \]

\[P = \frac{35.000.000 \text{/ano}}{357.000 \text{Hh/ano}} \rightarrow P = 98,04$/Hh \]

Exemplo 2:

A empresa do exemplo anterior produziu 714.000 unidades do produto que fabrica e comercializa. Qual a produtividade parcial da mão-de-obra, levando em conta agora o output – unidades.

Solução:

Mão-de-obra (Input) = 357.000 homens.hora/ano

\[Output = 714.000 \text{ unidades} /\text{ano} \]

\[P = \frac{714.000\text{unid/ano}}{357.000\text{Hh/ano}} \rightarrow P = 2,0\text{unid/Hh} \]
4.2.2 Exercícios de Produtividade Parcial

1) O restaurante Bom Prato no mês de julho faturou R$ 18.480,00, e para isso contou com 7 funcionários. Determine, com base na mão-de-obra (homem-hora) utilizada, a produtividade parcial do restaurante, sabendo que os funcionários trabalharam em média 160 horas/mês.

2) Determinar a produtividade parcial da empresa BETA sabendo que em certo ano fiscal o faturamento foi $ 20 milhões e que para alcançá-lo foram utilizados 350 funcionários, os quais trabalharam em média 160 horas/mês.

3) Sabendo que a produtividade da mão-de-obra tem sido de $25,00/H.h e que a empresa faturou $12,5 milhões, no mês de julho. Determine a quantidade de mão-de-obra utilizada (em homens-hora) no mês de julho.
4.3 Medida de Produtividade em uma Organização

É a relação entre a medida do output gerado entre dois instantes \(i \) e \(j \), a preços do instante inicial, e a medida do input consumido entre os dois instantes \(i \) e \(j \), a preços do instante inicial (Martins & Laugeni, 2005).

\[
(PT)_{ij} = \frac{O_{ij}}{I_{ij}}
\]

Observe que os preços devem ter a mesma base de referência, podendo ser tanto o instante \(i \) como o \(j \) (ou qualquer outro).

Devemos, portanto, avaliar a produtividade em dois momentos que podem ser consecutivos ou não. Esta avaliação é comparativa e nos revela se a produtividade tem melhorado ou não.

Exemplo 1:

A empresa JOTA, no mês de março, produziu 2.500 unidades do produto “A” com a utilização 1.600 homens.hora. No mês de abril, produziu 2.200 unidades, utilizando 1.400 homens.hora. Determinar a produtividade total nos meses em questão e verificar a sua variação

Solução:

<table>
<thead>
<tr>
<th>Março:</th>
<th>Abril</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Input = 1.600) homens-hora</td>
<td>(Input = 1.400) homens-hora</td>
</tr>
<tr>
<td>(Output = 2.500) unidades</td>
<td>(Output = 2.200) unidades</td>
</tr>
</tbody>
</table>
Para o mês de março:

\[PT_{Mar} = \frac{2.500}{1.600} = 1.56 \text{ unidades/ H.h} \]

Para o mês de abril:

\[PT_{Abr} = \frac{2.200}{1.400} = 1.57 \text{ unidades/ H.h} \]

Então, a variação de produtividade foi:

\[\Delta PT = \frac{1.57}{1.56} = 1.006 \]

Que corresponde a um aumento de 0,6%.

4.3.1 Exercícios de Medida de Produtividade

1) Uma empresa de cosméticos utilizava 70 toneladas de uma determinada matéria-prima na produção de 105.000 litros de shampoo, o que representava uma produtividade 1,5 para cada quilograma de matéria-prima utilizado. Uma mudança no processo produtivo reduziu as perdas durante a produção e agora a empresa necessita apenas 63 toneladas para produzir os mesmos 105.000 litros de shampoo. Determine a produtividade para os dois períodos e calcule qual foi a sua variação.
2) Uma empresa produzia 1.280 unidades do produto “P” por dia com a utilização de 10.840 empregados. Após melhorias no processo produtivo, passou a produzir 1.536 unidades/dia com a utilização de 7.440 empregados. Qual foi o aumento da produtividade da mão-de-obra (empregado)?

3) O setor de usinagem de uma metalúrgica conta com três categorias profissionais: ajustador, torneiro e auxiliar de torneiro. Os salários são respectivamente de $ 5,00, $3,33 e $2,25, por hora. A produtividade foi avaliada em dois períodos consecutivos de 1 hora. A partir dos da tabela, calcular a produtividade total da mão-de-obra (unid./H.h) para os dois períodos. Houve aumento da produtividade no período 2? Analisar os resultados.

<table>
<thead>
<tr>
<th>Mãe de Obra</th>
<th>Período 1 Produção 1.050 (unid)</th>
<th>Período 2 Produção 1.208 (unid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajustador</td>
<td>12 H.h</td>
<td>16 H.h</td>
</tr>
<tr>
<td>Torneiro</td>
<td>6 H.h</td>
<td>9 H.h</td>
</tr>
<tr>
<td>Auxiliar Torn.</td>
<td>20 H.h</td>
<td>16 H.h</td>
</tr>
</tbody>
</table>
5 Planejamento da Capacidade Produtiva

Como já vimos anteriormente, a função produção tem alguns objetivos de desempenho a serem alcançados e para que isso ocorra é necessário que o projeto do processo seja capaz de oferecer as condições necessárias para a produção.

5.1 Planejamento da capacidade

A capacidade é, em uma análise ampla, a quantidade que se pode colocar em um determinado espaço físico. Por exemplo, se perguntarmos a alguém qual é a capacidade de um copo, logo imaginamos qual seria a quantidade de líquido necessário para preencher aquele espaço. Se por acaso tentarmos calcular qual a capacidade de um armazém, primeiramente obtérimos informações sobre as características dos produtos que precisamos armazenar em seguida faríamos o cálculo da capacidade do armazém. Esta ideia de capacidade apesar de ser adequada em muitos casos, pode ser limitada se precisar incluir a dimensão tempo. Se tomarmos por base o exemplo anterior do armazém e levarmos em conta que os produtos ali estocados não permanecem mais que uma semana, poderemos concluir que a capacidade mensal do armazém é quatro vezes maior que aquela anteriormente prevista.

Desta forma a capacidade pode ser definida como:

CAPACIDADE

É a quantidade de trabalho máxima que uma unidade produtiva pode executar, dado um determinado intervalo de tempo.
Exemplo 1:

Um armazém pode estocar fisicamente 20 toneladas de um determinado produto, esses produtos permanecem em estoque por um período de cinco dias.

Qual a capacidade mensal de estoque do meu armazém?

\[
\frac{20 \text{ toneladas}}{5 \text{ dias/ período}} \times \frac{30 \text{ dias/ mês}}{5 \text{ dias/ período}} = 120 \text{ toneladas/ mês}
\]

Resposta: a capacidade mensal do armazém, para a prestação do serviço de estocagem, é de 120 toneladas por mês.

Exemplo 2:

Uma fábrica de sapatos é capaz de produzir 30 pares por hora. A fábrica funciona 6 dias por semana e o tempo diário disponível para a produção é de 10 horas. Pergunta-se qual a capacidade semanal de produção da máquina?

Resolução:

Primeiro, devemos identificar qual a quantidade de horas disponíveis para a produção na semana.

\[
6 \text{ dia/ semana} \times 10 \text{ horas/ dia} = 60 \text{ horas/ semana}
\]

Em seguida calculamos a capacidade produtiva semanal:

\[
30 \text{ par/ hora} \times 60 \text{ hora/ semana} = 1.800 \text{ par/ semana}
\]

Desta forma, a capacidade produtiva semanal da fábrica é de 1.800 pares por semana.
5.1.1 Exercícios de Cálculo de Capacidade

Resolva os exercícios seguintes levando em conta a dimensão tempo para uma determinação de capacidade mais precisa.

1. Uma máquina é capaz de produzir uma peça a cada 02 minutos. A máquina funciona efetivamente 08 horas por dia. Pergunta-se qual a capacidade diária de produção da máquina?

2. Um funcionário de uma empresa trabalha 6 horas por dia e consegue montar 20 equipamentos em 1 hora. Qual a capacidade diária de produção deste funcionário.

3. Uma fábrica de geladeiras produz apenas um modelo de geladeira, chamado popular. Este modelo de geladeira devido a sua simplicidade pode ser montado em apenas 45 minutos. As instalações da fábrica podem disponibilizar 200 horas por semana para montagem. Pergunta-se qual a capacidade semanal da fábrica?
4. Suponha que uma fábrica de fogões produza três modelos diferentes: o básico, o *standard* e o especial. O modelo básico pode ser montado em meia hora, o modelo *standard* em 0,75 hora e o especial em uma hora. A fábrica tem disponíveis 800 horas de montadores por semana. Se a demanda para as unidades dos modelos básicos, *standard* e especial segue a proporção de 2:3:2, respectivamente. Pergunta-se, qual será a capacidade semanal para cada modelo, seguindo a proporção de demanda?
5.2 Capacidade de Projeto e Volume de Produção Real

Nem sempre aquilo que é projetado, em termos de capacidade, é realmente alcançado. Quando os projetistas técnicos elaboram uma determinada arquitetura para produção, eles pretendem levar em conta o maior número de variáveis que possam afetar a capacidade produtiva como, por exemplo, paradas para ajuste de máquina, paradas para manutenção, etc. Porém nem sempre todas as variáveis podem ser determinadas ou consideradas. Problemas de defeito sistemático em equipamentos ou problemas de falta ao trabalho de funcionário são exemplos de elementos redutores de capacidade. Desta forma, temos uma capacidade referente ao projeto e outra relativa a efetiva utilização da capacidade.

No exemplo seguinte podemos ver como essas diferenças podem acontecer:

Exemplo 1:

Uma empresa que produz fichários projetou a sua linha de produção para produzir 1000 fichários por semana. Para a produção de um fichário são necessárias quatro operações. A operação “A” corresponde à fabricação da capa, a operação B corresponde à fabricação do grampo, a operação C corresponde a fixação do grampo na capa e a operação D corresponde à colocação das folhas. A ilustração abaixo representa cada atividade no processo produtivo e sua respectiva capacidade.

Figura 6.1: Linha de produção projetada para 1000 unidades por semana.

Neste caso específico a capacidade projetada foi de 1000 unidades de fichário por semana, mas por um motivo desconhecido o volume de produção real tem sido de 980
unidades por semana. Esse volume de produção real nos mostra que a produção **não está sendo utilizada** 100%.

Figura 6.2: Linha com produção real de 980 unidades por semana.

\[
Utz = \frac{VPR}{CP}
\]

A utilização de um sistema produtivo pode ser calculada pela seguinte fórmula:

Onde:

- \(Utz \) = Utilização do sistema,
- \(VPR \) = Volume de produção real,
- \(CP \) = Capacidade de projeto.

No exemplo anterior a utilização do sistema produtivo seria de:

\[
Utz = \frac{980\text{unidades.semana}}{1000\text{unidades.semana}} = 0,98 \text{ ou } 98\%
\]

5.2.1 Exercícios de Utilização da Capacidade Produtiva

1). Suponha que um determinado sistema produtivo foi concebido para produzir 500 unidades por dia de um produto ZXY. A fábrica funciona 6 dias por semana, e no último semestre produziu semanalmente 2550 unidades do produto ZXY. Pergunta-se qual a capacidade de projeto para um mês de produção, a produção mensal real e a utilização do sistema produtivo?

2. Um fabricante de papel fotográfico tem uma linha de cobertura cuja capacidade seja de 200 metros quadrados por minutos e que a linha opera 24 horas por dia, 7 dias por semana.
Os registros para uma semana de produção mostram o seguinte tempo de produção perdido:

<table>
<thead>
<tr>
<th></th>
<th>Descrição</th>
<th>Tempo (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mudanças de produtos (set ups)</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Manutenção preventiva regular</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Nenhum trabalho programado</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Amostragens de qualidade</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Tempos de troca de turnos</td>
<td>3,5</td>
</tr>
<tr>
<td>6</td>
<td>Paradas para manutenção</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Investigação de falhas de qualidade</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Falta de estoque de material de cobertura</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Faltas de pessoal</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Esperas pelos rolos de papel</td>
<td>3</td>
</tr>
</tbody>
</table>

Determinar:

b) A capacidade de projeto da fábrica;

c) O volume de produção real;

d) A utilização da capacidade produtiva.
3. O Layout de uma fábrica está disposto conforme ilustração abaixo. São quatro setores na linha de montagem: guilhotina, repuxo, soldagem e montagem. As peças para serem produzidas precisam necessariamente passar pelos quatro setores, porém não importa qual guilhotina ou torno de repuxo será usada. Cada guilhotina tem capacidade de projeto de 03 peças/min, cada torno de repuxo tem capacidade de projeto 02 peças/min, o setor de soldagem tem capacidade de projeto de 300 peças/h e o setor de montagem tem capacidade de projeto de 350 unidades/hora. Durante a semana anterior, de 40 horas, a produção real foi de 10.000 peças. Calcule:

a) a capacidade projetada de produção semanal do sistema;

b) a utilização do sistema.
5.3 Avaliação Econômica de Capacidade

Este tipo de avaliação tem como objetivo estabelecer uma relação entre o volume produzido e as receitas obtidas. É possível, através do método do ponto de equilíbrio uma visualização do comportamento dos custos e da receita, dado um determinado volume de produção visto que é possível construir um gráfico.

Para que seja dado início a elaboração da análise é necessária a identificação dos custos fixos e custos variáveis.

- **Custos Fixos**: os custos fixos tendem a permanecer constante independentemente da quantidade a ser produzida. Como exemplo de custos fixos podemos citar as despesas administrativas, a despesa com aluguéis ou a despesa com a manutenção das instalações ou equipamentos.

- **Custos Variáveis**: são aqueles que variam em função do volume produzido. À medida que a quantidade de produtos aumenta ou diminui os custos variáveis tendem a oscilar na mesma medida. São exemplos de custos variáveis: matéria-prima e mão-de-obra direta.

Estas definições são limitadas e não demonstram todos os detalhes que efetivamente existem na distinção entre custos fixos e custos variáveis, porém para efeito desta análise são suficientes.
No gráfico abaixo podemos observar o comportamento dos custos em função da quantidade produzida.

Custo total de produção corresponde à soma dos custos fixos mais custos variáveis, a sua representação gráfica pode ser vista no gráfico abaixo.

\[CT = CF + CVu \cdot q \]

\[CT = \text{Custo Total} \]

\[CF = \text{Custos Fixos} \]

\[Cvu = \text{Custos variáveis} \]

\[q = \text{quantidade produzida}. \]
A Receita Total está associada à quantidade produzida e ao preço de venda. Assim, quanto maior a produção maior a receita obtida.

\[RT = PVu \cdot q \]

Onde:
- \(RT = \text{Receita Total} \)
- \(PVu = \text{Preço de Venda unitário} \)
- \(q = \text{quantidade produzida} \)

O ponto de equilíbrio representa o valor de \(q \) da produção, para o qual custos totais e receita total são iguais, ou seja, a produção onde o lucro é zero. Para se determinar a quantidade no ponto de equilíbrio em função dos custos e do preço unitário de venda, basta igualar as equações de custos totais e receita total. Veja o desenvolvimento a seguir:
Custo total = Receita Total

\[CF + CVu.q = PVu.q \]

\[CF = PVu.q - CVu.q \]

\[CF = q(PVu - CVu) \]

Desta forma:

\[q = \frac{CF}{(PVu - CVu)} \]

Exemplo

Uma planta industrial apresenta custos fixos de R$ 200 mil mensais e custos diretos médios de produção da ordem de R$ 30,00 por unidade produzida. O custo médio refere-se a uma linha de produtos semelhantes cuja composição deverá permanecer aproximadamente constante. O preço médio de venda do produto pode ser assumido como R$ 38,00 por unidade. Determinar:

a) o ponto de equilíbrio para a planta;

b) a produção necessária para proporcionar um lucro mensal de $ 32 mil.
a)
Temos:

\[\text{CF} = \text{R$ 200.000,00} \]
\[\text{CVu} = \text{R$ 30,00} \]
\[\text{Pvu} = \text{R$ 38,00} \]

Aplicando a equação do ponto de equilíbrio:

\[q = \frac{\text{CF}}{(\text{PVu} - \text{CVu})} = \frac{200.000}{(38 - 30)} = \frac{200.000}{8} = 25.000 \text{ unidades} \]

b) Neste caso usaremos a mesma fórmula acrescendo o lucro ao custo fixo:

\[q = \frac{\text{L} + \text{CF}}{(\text{PVu} - \text{CVu})} = \frac{32.000 + 200.000}{(38 - 30)} = 29.000 \text{ unidades} \]

6.1.1. Exercícios de Avaliação Econômica da Capacidade Produtiva

1) Uma planta industrial apresenta custos fixos de R$ 312.500,00 mensais e custos diretos médios de produção da ordem de R$ 80,00 por unidade produzida. O preço médio de venda do produto pode ser assumido como R$ 105,00 por unidade. Determinar:

a) o ponto de equilíbrio para a planta;

b) a produção necessária para proporcionar um lucro mensal de R$ 62.000,00.
2) Uma planta industrial apresenta custos fixos de R$ 209.300,00 mensais e custos diretos médios de produção da ordem de R$ 29,00 por unidade produzida. O custo médio refere-se a uma linha de produtos semelhantes cuja composição deverá permanecer aproximadamente constante. O preço médio de venda do produto pode ser assumido como R$ 52,00 por unidade. Determinar:

a. O ponto de equilíbrio para a planta;

b. Para uma produção e venda mensal de 11.000 unidades, qual o lucro.

3) A empresa BRAVO precisa determinar qual a capacidade ideal de produção do produto “X” levando em conta aspectos econômicos. Sabe-se que o preço de venda médio da concorrência é de R$ 3,21 e que a empresa BRAVO deseja praticar um preço 6,5% menor que a concorrência. O custo variável unitário é de R$ 2,50. E os custos fixos mensais R$ 20.000,00. Sabe-se também que a capacidade máxima da fábrica é de 40.000 unidades mês. Determine o ponto de equilíbrio da planta e avalie qual o lucro máximo que a empresa pode obter.
6 Localização de Empresas

Determinada a capacidade com que a empresa vai operar, buscam-se as alternativas mais adequadas para a instalação da empresa.

6.1 Fatores que influem na localização

- Localização dos mercados consumidores.
- Localização dos fornecedores e serviços de apoio.
- Disponibilidade de mão de obra – escolas técnicas especializadas.
- Nível salarial e sindicatos.
- Disponibilidade de transporte (logística).
- Incentivos fiscais.
- Potencial hídrico e energético.
- Restrições ambientais.
- Cluster – agrupamento natural de empresas similares em determinada região geográfica. Ex. Rua São Caetano; Santa Efigênia, Bexiga etc.
- Condomínio industrial – localização de fornecedores dentro da planta da montadora ou adjacente a ela.
- Consórcio modular – o fornecedor se localiza dentro da planta da montadora e é responsável por todas as etapas de montagem de seus itens no produto.
- Etc.

6.2 Método do Centro de Gravidade

Neste método procura-se avaliar o local de menor custo para a instalação da empresa, considerando o fornecimento de matérias-primas e os mercados consumidores.
Exemplo

Na rede a seguir, MP é um ponto de fornecimento de matérias-primas e PA é um ponto de consumo de produtos acabados.

A localização horizontal (LH) e a localização (LV) são calculadas como mostrado nas Tabelas 1 e 2.

Tabela 1

<table>
<thead>
<tr>
<th>DISTRIBUIÇÃO DOS LOCAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Km</td>
</tr>
<tr>
<td>400 Km</td>
</tr>
<tr>
<td>300 Km</td>
</tr>
<tr>
<td>200 Km</td>
</tr>
<tr>
<td>100 Km</td>
</tr>
<tr>
<td>0 Km</td>
</tr>
</tbody>
</table>

Tabela 2

<table>
<thead>
<tr>
<th>CUSTOS / QUANTIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
</tr>
<tr>
<td>MP1</td>
</tr>
<tr>
<td>MP2</td>
</tr>
<tr>
<td>MP3</td>
</tr>
<tr>
<td>PA1</td>
</tr>
<tr>
<td>PA2</td>
</tr>
<tr>
<td>PA3</td>
</tr>
<tr>
<td>PA4</td>
</tr>
<tr>
<td>PA5</td>
</tr>
</tbody>
</table>

Localização Horizontal = \((200 \times 3 \times 100) + (400 \times 2 \times 200) + ... + (250 \times 4 \times 100) + (50 \times 3 \times 100)\) = 1,400,000 = 285,7

Localização Vertical = \((200 \times 3 \times 500) + (400 \times 2 \times 400) + ... + (250 \times 4 \times 300) + (50 \times 3 \times 100)\) = 1,845,000 = 376,5

O ponto X desejado representa a localização aproximada
6.2.1 Exercícios

1. Uma empresa é abastecida com materiais de dois fornecedores – F1 e F2 – e deve distribuir seus produtos acabados em três mercados consumidores – M1, M2 e M3. A Tabela 3 apresenta os dados e as coordenadas horizontal (H) e vertical (V) de cada local. Determinar a posição da empresa E pelo método do centro de gravidade.

<table>
<thead>
<tr>
<th>Local</th>
<th>Quantidade (t)</th>
<th>Custo Transporte ($/T.KM)</th>
<th>H KM</th>
<th>V KM</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>100</td>
<td>0,50</td>
<td>100</td>
<td>900</td>
</tr>
<tr>
<td>F2</td>
<td>100</td>
<td>0,50</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>M1</td>
<td>50</td>
<td>1,00</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>M2</td>
<td>50</td>
<td>1,00</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>M3</td>
<td>50</td>
<td>1,00</td>
<td>700</td>
<td>300</td>
</tr>
</tbody>
</table>

LH = 420 e LV = 540
2. Um fabricante de produtos de higiene pessoal (sabonetes, xampus...) tem 2 plantas industriais, a primeira em São Paulo e a segunda em Belo Horizonte, e distribui o produto para quatro centros de distribuição localizados em, Cuiabá, Rio de Janeiro, Vitória e Curitiba. Devido aos elevados custos de distribuição a empresa pensa em instalar um armazém que abasteceria estes CDs com os produtos das fábricas. Determine a localização deste armazém geral pelo método do centro de gravidade.

<table>
<thead>
<tr>
<th>Localidade</th>
<th>Coordenada X</th>
<th>Coordenada Y</th>
<th>Toneladas por mês</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curitiba</td>
<td>65</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Vitória</td>
<td>127</td>
<td>130</td>
<td>300</td>
</tr>
<tr>
<td>Cuiabá</td>
<td>30</td>
<td>120</td>
<td>200</td>
</tr>
<tr>
<td>São Paulo</td>
<td>80</td>
<td>70</td>
<td>300</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>90</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Belo Horizonte</td>
<td>58</td>
<td>96</td>
<td>400</td>
</tr>
</tbody>
</table>

X = 76,3 e Y = 98,1
6.3 Método dos Momentos

Este método é semelhante ao método do centro de gravidade, com a seguinte particularidade: a ponderação de um determinado centro (cidade) contra os demais centros existentes em uma determinada região geográfica. Para cada centro, calcula-se o momento que as demais cidades somadas possuem. O momento (M) é:

\[M = (\text{custo unitário de transporte} \times \text{quantidade} \times \text{distância}) \]

O centro que tiver a menor soma de momentos será o escolhido.

Exemplo: Em um estudo de localização industrial, foi selecionada a região a seguir, que abrange as cidades A, B, C e D. Dado que os demais fatores de localização não favorecem nenhuma das cidades com relação às outras, determinar a localização de mínimo custo de transporte. Supõe-se que o custo unitário de transporte é o mesmo para qualquer tipo de carga transportada e é independente da origem ou do destino da carga, sendo igual a $ 2,00 por tonelada por quilômetro transportado ($ 2,00/t.km).

Figura 1

\[
\begin{align*}
A: (\$ 2,00 \times 3t \times 100 \text{ km}) + (\$ 2,00 \times 5t \times 400\text{km}) + (\$2,00 \times 5t \times 200\text{km}) &= \$ 6.600,00 \\
B: (\$ 2,00 \times 10t \times 100 \text{ km}) + (\$ 2,00 \times 5t \times 300\text{km}) + (\$2,00 \times 5t \times 150\text{km}) &= \$ 6.500,00 \\
C: (\$ 2,00 \times 10t \times 400 \text{ km}) + (\$ 2,00 \times 3t \times 300\text{km}) + (\$2,00 \times 5t \times 450\text{km}) &= \$ 14.300,00 \\
D: (\$ 2,00 \times 10t \times 200 \text{ km}) + (\$ 2,00 \times 3t \times 150\text{km}) + (\$2,00 \times 5t \times 450\text{km}) &= \$ 9.400,00 \\
\end{align*}
\]

Portanto, a menor soma de momentos corresponde à cidade B.
6.3.1 Exercícios

1. Uma empresa vai localizar sua fábrica na região apresentada na Figura 2. Com os dados da Tabela 5, em que cidade dever ser localizada?

```
<table>
<thead>
<tr>
<th>De/Para</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Custo Y</th>
<th>Quant. Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>100</td>
<td>300</td>
<td>230</td>
<td>150</td>
<td>350</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>0</td>
<td>200</td>
<td>150</td>
<td>50</td>
<td>250</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>300</td>
<td>200</td>
<td>0</td>
<td>350</td>
<td>250</td>
<td>50</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>230</td>
<td>150</td>
<td>350</td>
<td>0</td>
<td>100</td>
<td>400</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>E</td>
<td>150</td>
<td>50</td>
<td>250</td>
<td>100</td>
<td>0</td>
<td>300</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>350</td>
<td>250</td>
<td>50</td>
<td>400</td>
<td>300</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
```

Cidade B ($ 79.000,00)
6.4 Método do Ponto de Equilíbrio

No método do ponto de equilíbrio são comparadas diferentes localidades em função dos custos totais de operação (custos fixos + custos variáveis)

Exemplo:

Uma empresa reduziu a provável localização de uma nova fábrica a três localidades: A, B e C. Com os dados de custos fixos e de custos variáveis, determinar a melhor localização.

<table>
<thead>
<tr>
<th>Localidade</th>
<th>Custo Fixo por Ano</th>
<th>Custo Variável Unitário</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$ 120.000,00</td>
<td>$ 64,00</td>
</tr>
<tr>
<td>B</td>
<td>$ 300.000,00</td>
<td>$ 25,00</td>
</tr>
<tr>
<td>C</td>
<td>$ 400.000,00</td>
<td>$ 15,00</td>
</tr>
</tbody>
</table>

Representar as retas dos custos totais para cada localidade.

O primeiro ponto de cada reta de custo é calculado para a quantidade Q = 0, e é o próprio custo fixo de cada localidade.

Depois vamos calcular o custo total para uma quantidade, Q = 20.000 unidades.

Custo total de A = (em $ 1.000,00) = 120 + (64 x 20) = $ 1.400,00
Custo total de B = (em $ 1.000,00) = 300 + (25 x 20) = $ 800,00
Custo total de C = (em $ 1.000,00) = 400 + (15 x 20) = $ 700,00
Calculando os pontos de intersecção das retas, temos:

Intersecção entre A e B: $120 + 64 \times Q = 300 + 25 \times Q$ temos: $Q = 4.615$ unid.

Intersecção entre B e C: $300 + 25 \times Q = 400 + 15 \times Q$. temos: $Q = 10.000$ unid.

- Para uma produção de até 4.615 unidades, a melhor localização é A;
- Entre 4.615 unidades e 10.000 unidades, a melhor localização é B;
- Acima de 10.000 unidades a produzir, a melhor localização é C.

Nos pontos de intersecção não há vantagem de custo de uma localidade com relação à outra.
6.4.1 Exercícios

A empresa Transportadora está pensando em montar um centro de distribuição para atender à região do eixo São Paulo – Rio de Janeiro. Três cidades são candidatas: São Paulo, Rio de Janeiro e Taubaté. A venda projetada variará entre 500.000 e 700.000 embarques por ano. Em cada uma das cidades candidatas, foram identificados os custos fixos e variáveis da operação.

Determine onde deverá ser colocado o novo centro de distribuição.

<table>
<thead>
<tr>
<th>Cidade</th>
<th>Custo Fixo Anual</th>
<th>Custo Variável/Embarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taubaté</td>
<td>$ 2.000.000,00</td>
<td>$ 9,00</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>$ 3.000.000,00</td>
<td>$ 5,00</td>
</tr>
<tr>
<td>São Paulo</td>
<td>$ 4.000.000,00</td>
<td>$ 4,00</td>
</tr>
</tbody>
</table>

Rio de Janeiro
6.5 Avaliação de fatores qualitativos

Neste método a empresa pondera os fatores qualitativos de quatro cidades candidatas para sediar sua nova unidade. Inicialmente é necessário definir os fatores a serem considerados e a cada um deles é atribuído um determinado peso, sendo que o total dos pesos soma 100. Posteriormente, as pessoas envolvidas (principais executivos) atribuem a cada uma das cidades uma nota, entre 0 (pior condição) e 10 (melhor condição), para cada um dos fatores. Para cada cidade, toma-se a nota média e, a que apresentar a melhor pontuação será a localidade escolhida.

<table>
<thead>
<tr>
<th>Peso</th>
<th>Fatores / Notas Médias por fator</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Disponibilidade de pessoal</td>
<td>7,5</td>
<td>8,0</td>
<td>6,5</td>
<td>5,0</td>
</tr>
<tr>
<td>15</td>
<td>Aspectos sindicais</td>
<td>10,0</td>
<td>5,0</td>
<td>7,0</td>
<td>9,5</td>
</tr>
<tr>
<td>20</td>
<td>Restrições ambientais</td>
<td>5,0</td>
<td>7,5</td>
<td>9,0</td>
<td>6,5</td>
</tr>
<tr>
<td>15</td>
<td>Qualidade de vida</td>
<td>9,0</td>
<td>8,0</td>
<td>9,5</td>
<td>8,5</td>
</tr>
<tr>
<td>15</td>
<td>Suprimento de materiais</td>
<td>6,5</td>
<td>6,0</td>
<td>7,5</td>
<td>8,5</td>
</tr>
<tr>
<td>15</td>
<td>Isenção de impostos</td>
<td>5,0</td>
<td>8,0</td>
<td>8,0</td>
<td>8,5</td>
</tr>
<tr>
<td>10</td>
<td>Desenvolvimento regional</td>
<td>5,0</td>
<td>6,0</td>
<td>8,0</td>
<td>6,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peso</th>
<th>Fatores / Notas Médias por fator</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Disponibilidade de pessoal</td>
<td>75,0</td>
<td>80,0</td>
<td>65,0</td>
<td>50,0</td>
</tr>
<tr>
<td>15</td>
<td>Aspectos sindicais</td>
<td>150,0</td>
<td>75,0</td>
<td>105,0</td>
<td>142,5</td>
</tr>
<tr>
<td>20</td>
<td>Restrições ambientais</td>
<td>100,0</td>
<td>150,0</td>
<td>180,0</td>
<td>130,0</td>
</tr>
<tr>
<td>15</td>
<td>Qualidade de vida</td>
<td>135,0</td>
<td>120,0</td>
<td>142,5</td>
<td>127,5</td>
</tr>
<tr>
<td>15</td>
<td>Suprimento de materiais</td>
<td>97,5</td>
<td>90,0</td>
<td>112,5</td>
<td>127,5</td>
</tr>
<tr>
<td>15</td>
<td>Isenção de impostos</td>
<td>75,0</td>
<td>120,0</td>
<td>120,0</td>
<td>127,5</td>
</tr>
<tr>
<td>10</td>
<td>Desenvolvimento regional</td>
<td>50,0</td>
<td>60,0</td>
<td>80,0</td>
<td>65,0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>682,5</td>
<td>695,0</td>
<td>805,0</td>
<td>770,0</td>
</tr>
</tbody>
</table>

Dentro do critério apresentado, a cidade “C” seria a escolhida.
6.5.1 Exercícios

A EMPRESA está analisando três diferentes locais para implantação de uma nova unidade de manufatura. Por razões de sigilo empresarial, os três locais foram codificados como A, B e C e, inicialmente, foram levantados os custos de operação e transporte, concluindo-se que o local B apresentaria os menores custos. Para complementar essa análise foram identificados fatores qualitativos, atribuindo-se pontos de 0 a 100 a cada um dos fatores em cada um dos locais.

Que decisão deveria ser tomada quanto à localização de nova unidade industrial?

<table>
<thead>
<tr>
<th>Fator</th>
<th>Peso</th>
<th>Pontos: A</th>
<th>Pontos: B</th>
<th>Pontos: C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serviço aéreos</td>
<td>5</td>
<td>90</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>Modais de transporte</td>
<td>5</td>
<td>65</td>
<td>92</td>
<td>85</td>
</tr>
<tr>
<td>Proximidade a mercados</td>
<td>10</td>
<td>95</td>
<td>90</td>
<td>65</td>
</tr>
<tr>
<td>Qualidade de vida</td>
<td>15</td>
<td>80</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Disponibilidade de escolas</td>
<td>15</td>
<td>72</td>
<td>95</td>
<td>60</td>
</tr>
<tr>
<td>Proximidades a clientes</td>
<td>20</td>
<td>75</td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>Disponibilidade de pessoal</td>
<td>30</td>
<td>90</td>
<td>65</td>
<td>80</td>
</tr>
</tbody>
</table>
7 BIBLIOGRAFIA

